
Manifold: O(N 2) testing of network protocols
XXX
XXX
XXX,
XXX

Email: XXX

XXX
XXX
XXX
XXX

XXX
XXX
XXX,
XXX

Email: XXX

Abstract—While developing a UDP-based peer-to-peer trans-
port protocol, we faced the problem of testing the implementa-
tion, its state machine, and congestion control algorithms. The
problem is known to be fundamentally hard. Discoveries of
decades-old bugs in TCP/IP stacks give a good illustration to
this. Not being satisfied with classic methods, we have created
the Manifold framework for automated massively parallel testing.
Our main challenge was the combinatorial amount of diverse
network conditions, protocol states and code paths affecting
the implementation’s behavior. By running traffic flows between
every pair of nodes, Manifold covers O(N2) combinations of
simulated and/or real network conditions thus performing mas-
sive case coverage in limited time. Reports, graphs, and a full
system-wide event log allows to trace code paths and investigate
problems. Being integrated into the code/build/test loop, Manifold
instantly reveals both progress and regressions and enables rapid
iterations on the code.

I. INTRODUCTION

The development and testing of network protocols is made
difficult by the non-determinism of distributed systems. Con-
gestion control is one of the most complicated topics as
workings of the algorithms heavily depend on race conditions,
packet losses, and other peculiarities of network behavior.
Being put in somewhat different conditions, a “proven” code
might turn “problematic”, as it was the case with the famous
LFN problem [1], [2] of TCP. Bugs in TCP implementations
are found till this day [3], despite the excessive level of use
and testing in past 30 years. New TCP congestion control algo-
rithms are normally tested in the settings of dumb bell and/or
parking lot [4] simulated network topologies, as well as in
the wild. The dumb bell setting allows to test stream behavior
while competing with other flows for a single bottleneck; the
parking lot topology simulates a sequence of bottlenecks.

We have developed a multiparty (swarming) transport pro-
tocol [5] using the LEDBAT [6] least-than-best-effort (“scav-
enger”) congestion control algorithm. We had to test the imple-
mentation’s behavior in a swarm, an aspect not addressed by
the classic methods. As well, we found out, that those methods
do not allow to fully test a protocol and its implementation
against various network behavior peculiarities.

As an illustrative anecdote, one of the authors was debug-
ging the implementation on an ordinary DSL line, when its
uplink losses suddenly went to 10% because of some technical
problem on the ISP side. Regular web browsing was unaffected
by the issue, as TCP is highly resilient to acknowledgement
losses on the reverse (i.e. receiver to sender) path. Thus, the

search for a non-existing regression lasted for a day, till the
author decided to upload some photos thus uncovering the
issue. Informally, a network might be “special” or simply
“broken” in many different ways, and we needed a systematic
way of checking our code against those peculiarities.

As any change in the code might cause unintended effects
in particular network conditions, we needed a fast way of
checking those effects to track our progress as well as regres-
sions. While unit tests check for correctness of a deterministic
result given certain inputs, we needed massive case coverage
of network conditions to ensure the results are acceptable in
every particular case. Ideally, a test run had to be integrated
into the regular code-build-test loop, similarly to unit testing.

Thus, we came up with the idea of O(N2) testing where N
real or emulated nodes represent different network conditions
(high RTT, jitter, losses, NAT, asymmetry, etc). During one test
run, we send traffic flows between every pair of nodes, ideally
covering O(N2) combinations of network conditions, like
“RTT and jitter”, or “NAT and losses”. The testing setup had
to run tests and present the resulting statistics comprehensibly
and quickly, to allow for repeated testing runs.

II. MANIFOLD TEST SUITE

The building of the Manifold testing suite started with
the realization that manually testing the code under various
network conditions is an extremely cumbersome and error-
prone process, as setting up network configurations involves
multi-step technical operations, likely spanning several hosts.

Thus, the objective was to implement our O(N2) testing
approach using simple, improvised means, allowing for maxi-
mum parallelism, supporting diverse real and emulated setups.
The system had to be simple enough and flexible in adapting
to conditions, as the testing setups necessarily included diverse
existing servers as well as (uniform) clusters.

The resulting suite is a collection of shell scripts intended
for use with Linux/Unix test machines. Scripts are launched
from a single controlling machine using Secure Shell (ssh).
Log parsing is done with perl scripts, graphs are created with
gnuplot. Manifold scripts are included in the open source
implementation of our protocol [7].

A. General workings
Manifold execution is centered around a “fan-out” shell

script named doall that opens parallel ssh sessions to



every server of the testing setup and runs all the necessary
commands. Every run involves a sequence of operations,
typically build, netem, run, clean, all ran by doall.
For example, ./doall build will check out a certain
version of the code, check for dependencies, build it and
do fast unit tests, on every server of the testing setup, in
parallel. Individual server quirks are resolved through per-
server plug-in extension scripts or environment variable pro-
files. Typically, in most cases it suffices to adjust environment
variables in a profile script (named env.hostname.sh).
Given a really special platform, an extension script (e.g.
build.hostname.sh) might override the default process
(i.e. build.default.sh).

In all scripts, servers are identified with their ssh handles
(as opposed to hostnames or IP addresses). That extra level
of indirection allows to run several testing nodes at the same
physical server or to move a node from one server to another.

B. Traffic manipulation
Testing the code on real nodes in the wild has its advantages

and drawbacks. The main advantage is that the code is tested
in a real network. The main drawback is that live network
conditions are transient and can’t be fully reproduced, so
different runs may not be comparable. As well, using real
setups is expensive. Thus, we developed several test cluster
setups using nodes with emulated network conditions.

We added scripts to control traffic conditions using two stan-
dard Linux kernel queuing disciplines (qdisc) for network de-
vices, used in our previous work [8] as well. HTB (Hierarchy
Token Bucket) [9] provides packet rate control capabilities. It
also enables emulating different network conditions for several
peers sharing the same physical server. Using Netem [10],
we added different packet delay, jitter and loss rules to every
HTB class. Egress and ingress packet flows can have different
sets of qdisc parameters. Ingress qdiscs are attached to an
IFB (Intermediate Functional Block) pseudo-device. Rules are
applied based on the UDP port of a packet, as every node
occupies a single port.

Thus, HTB/Netem scripts allow to emulate wide range of
specific network conditions and to freely mix emulated and
real network setups in a single test swarm.

C. Test swarm setups
Given N peers running on k servers, we may use different

variants of a network topology to put an accent on different
aspects of protocol behavior. We considered three types of
topologies: swarm (mesh), chain (sequential data relay) and
pairwise transfers. They test the code for swarming behavior,
robustness, and single-stream performance, respectively.

1) Large swarms: This swarm topology mostly tests the
code for general robustness, creating near-real-world swarming
download scenarios. The main challenge with this topology
was to run bigger swarms (and to process the resulting data).
Limits of the swarm size are determined by the number of
parallel ssh connections the control machine may start and the
maximum number of peers each test server may run without

exhausting its resources. (The former limit could be side-
stepped by starting parts of a swarm from different control
machines). So far, swarms of about thousand peers have been
successfully run with one controlling machine (Lenovo T400
laptop with 2GB RAM) and 11-13 servers (Sun Fire X2100
servers with 8GB RAM).

2) Chain tests: Chain tests are mercilessly effective in
finding state machine bugs. In a chained setup, each node
is only connected to the previous (source) and to the next
(sink) node. Thus, the data has to traverse the entire chain
sequentially. That topology is the least forgiving with regard
to state machine/ congestion control robustness, as a stall
or a slowdown in one flow inevitably affects all the nodes
further down the chain. That differs drastically from a swarm
topology, that may run fairly well with 50% transfers failed,
because of its high redundancy. Technically, our chained
setup restricts node connections by starting local iptables
firewalls at every node.

3) Pairwise tests: This setup aims to cleanly test protocol
behavior in different network conditions, by eliminating third
factors. Namely, with no swarming or data relay, precisely
one transfer is done form every node to every other node.
This topology puts flows on equal footing as opposed to the
swarmed and chained setups, where one transfer typically
depends on others. For larger N , it might pose a challenge
to run N2 streams without interference, using N servers. But,
in this particular setup, we need just one node to represent one
“peculiarity”. So, we would not need larger N .

D. Data harvesting

Automatic harvesting and analysis of the data turned up to
be a major challenge due to the sheer volume of it. While
sending or receiving one datagram, a peer generates 10-20
events that are necessary to understand the inner workings
of the state machine. A small 10MB transfer requires tens
of thousands of datagrams. Given 20-30 peers in an average
setup, that results in at least 107 log records per a single run,
or around 1GB of logs. Not precisely the Google scale, but
that data had to be digested and delivered to the user as soon
as possible, in a form that allows rapid analysis.

The problem was solved the way it was created. Namely,
log processing was implemented to run at the original servers,
the controlling machine only left to do one-pass log merge and
graph drawing. Thus, data harvesting and analysis was made
to scale together with the cluster.

Although the bulk of parsing and statistics is done at the
servers, it turned out, that with larger swarms (hundreds of
nodes), even maintaining so many parallel ssh connections
and merging the logs exhausted the control machine. In order
to prevent this, we added an option to restrict the maximum
number of parallel parsings. Thus, log processing may be done
in a sequence of ∼ N

k batches, each batch no more than k logs.
Since the number of sender-receiver pairs, and thus the number
of traffic flows, might be on the order of N2, the maximum
number of running gnuplot instances can also be limited.



Fig. 2. The main N by N “harvest” spreadsheet (back) shows the big picture.
Each cell (right) provides statistics on a flow.

E. Reports

The resulting reports must allow the user to rapidly examine
the test run traces for performance and abnormalities. The top-
level report must be simple enough to let the user grok the “big
picture” of swarm/flow behavior. Once the user focuses on a
particular location or event, it must be easy to switch fast to
more detailed data, down to the full event log.

After harvesting and processing the data, Manifold produces
an HTML spreadsheet N by N , showing summary stats
for every flow, as well as small graphs showing dynamics
of flows (Fig. 2). At this point, a user is able to estimate
performance and stability of the streams. Closer inspection
of every statistics bar reveals stats on message patterns.
In case the summary raises some suspicions, the user may
navigate to a large detailed version of the graph that gives
a good overview of congestion control behavior and network
conditions during the lifetime of the flow (see Fig. 1). The
graph plots three groups of parameters: time-based (average
round trip time, RTT deviation, one-way delay, minimum
delay, delay target [6]), packet-based (congestion window,
outstanding packets) and events (packet losses, detected by

timeout or reordering). This data is sufficient to understand
in great detail, how the transfer performed. Once the user is
interested in finer details, then the event of interest, its causes
and consequences, might be found in the full all-swarm event
log. The log is primarily analyzed with grep and similar
custom utilities. The process is helped by the uniform format
of log records: (time, node, flow, event, parameters).

As a result, a Manifold user is able to start with a fast qual-
itative estimation of the swarm and flows, then delve deeper
into details as necessary, down to quantitative examination of
the log and event-by-event analysis.

III. CONCLUSION

The Manifold testing approach performs massively parallel
O(N2) case coverage, showering your code with millions and
millions of unpredictable state/event combinations. The results
often lead to a realization, that your code’s performance is
never “perfect”, but probably it is “good enough” for the
current conditions. Despite the fact that Manifold invokes
non-trivial computational resources, it still can be used in
the routine code-build-test loop of software development. We
consider Manifold a useful addition to the standard dumb-
bell/parking-lot toolset of network protocol testbeds.

REFERENCES

[1] V. Jacobson, “TCP extensions for long-delay paths,” RFC 1072.
[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed

TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.
[3] S. Zehl, “The tale of a TCP bug,”

http://blogmal.42.org/tidbits/tcp-bug.story.
[4] A. L. et al, “Towards a common TCP evaluation suite,” in International

Workshop on Protocols for Fast Long-Distance Networks, 2008.
[5] V. Grishchenko, “The generic multiparty transport protocol (swift),”

draft-grishchenko-ppsp-swift-01.txt.
[6] S. Shalunov, “Low extra delay background transport (LEDBAT),”

draft-ietf-ledbat-congestion-04.txt.
[7] “libswift homepage,” http://libswift.org.
[8] P. H. J. Perälä, J. P. Paananen, M. Mukhopadhyay, and J.-P. Laulajainen,

“A novel testbed for P2P networks,” in TridentCom 2010, pp. 69–83.
[9] M. Devera, “Htb home,” http://luxik.cdi.cz/∼devik/qos/htb/.

[10] S. Hemminger, “Network emulation with netem,” in Proceedings of the
6th Australia’s National Linux Conference, April 2005.

Fig. 1. A detailed graph exposes congestion control history of a flow.

Victor Grishchenko


Victor Grishchenko



